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We find certain exact solutions of Jeffery-Hamel type for the boundary-layer 
equations for film flow over certain beds. If p is the angle of the bed with the 
horizontal and S is the arclength these beds have equation sinp = (const.)SP3, and 
allow a description of flows on concave and convex beds. The velocity profiles are 
markedly different from the semi-Poiseuille flow on a plane bed. 

We also find a class of beds in which the Jeffery-Hamel flows appear as a first 
approximation throughout the flow field, which is infinite in streamwise extent. Since 
the parameter y specifying the Jeffery-Hamel flow varies in the streamwise direction 
this allows a description of flows over curved beds which are slowly varying, as 
described in the theory, in such a way that the local approximation is that 
Jeffery-Hamel flow with the local value of y.  This allows the description of flows with 
separation and reattachment of the main stream in some cases. 

1. Introduction 
The study of film flow on a solid bed is important in engineering contexts. Lin 

(1983) lists many references. Fulford (1964) reports applications in chemical 
engineering and expresses the view that a knowledge of the velocity profiles under 
various flow conditions would be of great value. Wang (1984) states that ‘in many 
practical cases the bottom plate is not flat but curved, for example the film flow on 
rollers and wavy plates’. In view of these remarks, and also because of the intrinsic 
interest of the problem, it seems surprising that little work has appeared on thin-film 
flows over curved beds. The references known to the present author are all mentioned 
below. 

There is a well-known exact solution of the Navier-Stokes equations for the two- 
dimensional flow of a film of viscous, incompressible fluid down an inclined plane, 
with a free surface a t  constant pressure. This is a steady shear flow with a parabolic 
velocity profile and is often described as semi-Poiseuille flow. In  view of the 
drastically different types of flow which occur in symmetric curved-wall channels 
when the Reynolds number multiplied by the small divergence angle is of moderate 
size, it seems likely that variations to the semi-Poiseuille flow down a plane may 
occur if the bed is curved. In  this paper we obtain some exact solutions for the 
boundary-layer flow down special curved beds, and later show how those may be 
applied to a wider class of bed of special type. 

Some work has already appeared on flow over curved beds. Wang (1984) has 
studied thin-film flow down curved beds with Reynolds number of order one. He used 
an approximate analytic method and included surface-tension effects. The results 
indicate that flows may occur that are quite different from semi-Poiseuille flow, 
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including a case with separation and reattachment of the main flow. However, he did 
not give detailed results for velocity profiles, and the range of parameters is 
restricted. Eagles & Daniels (1986) have studied the boundary-layer approximation 
to flow down a curved bed, by an elementary approximation similar to Wang’s, 
though they take the series further but neglect some terms included by Wang. They 
found velocity profiles markedly different from semi-Poiseuille flow for values of the 
parameters for which the method is useful. However, the limitations on the 
usefulness of this method are quite severe. Gajjar (1983) has considered the 
interactive boundary-layer flows down a bed composed of two sections at different 
(extremely small) angles to the horizontal. The analysis here is very complicated, 
using multi-scaling methods based on various fractional powers of the Reynolds 
number. Merkin (1973) and Bertschy, Chin & Abernathy (1983) have performed 
numerical calculations, based on the boundary-layer equations, for development of 
the flow from a given velocity profile a t  some station. Merkin (1973) considered 
certain special beds whose equations are sin /3 = $[ 1 - k8/( 1 + X2)], where S is the 
arclength and p is the angle with the horizontal. He obtained results for the film 
thickness and skin friction, but did not give details of the velocity profiles. He stated 
that there appeared to be a singularity a t  separation which we shall discuss in $ 5 .  

In this paper we consider further the boundary-layer approximation for flow down 
curved beds. Let the Reynolds number be defined by R = M / v ,  where M is the 
volumetric streamwise flux and v is the kinematic viscosity. If S is the dimensionless 
film-thickness parameter, we assume R6 = h = O( 1) as 6-t 0. The problem then takes 
the standard form displayed in (2.8)-(2.12). In $3, we point out that for certain 
special beds of limited streamwise extent, with sinp = K / S 3 ,  where K is constant, 
exact solutions exist. These solutions are just those Jeffery-Hamel solutions 
appropriate to flow between two planes when the angle between them is small and 
the Reynolds number is large, except of course that the wedge flow is bisected. These 
solutions have been extensively described in the context of channel flow by Fraenkel 
(1962,1963). Velocity profiles with points of inflexion and with reversed flow near the 
walls are possible physically realistic solutions amongst the large number of 
mathematical solutions. The exact solutions of the boundary-layer equations 
discussed in this paper, like the exact Jeffery-Hamel solutions for flow in a wedge, 
are not necessarily attainable in practice. However, Fraenkel (1963) has shown that 
a family of these solutions provides a valid first approximation at every station in 
certain channels with extremely small wall curvature. 

This leads us, in $4, to consider beds of a special type, on which that same family 
of Jeffery-Hamel solutions appears as the first approximation. In fact we show that 
a t  every station the solution of (4.12) for the stream function gives the first 
approximation. This enables us to describe a variety of interesting flows, including 
some with separation and reattachment of the main stream within an overall smooth 
approximation to a solution of the Navier-Stokes equations. There are no 
singularities in the flow field unless the product of the Reynolds number and the 
streamwise derivative of the film thickness reaches a certain critical value, which is 
larger than the value a t  which the main flow separates from the wall. 

2. The governing equations 
Consider film flow down a plane bed a t  angle p to the horizontal (see figure 1). 

There exists an exact semi-Poiseuille flow solution of the incompressible Navier- 
Stokes equations, satisfying exactly the conditions on the stress a t  the free surface, 
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FIGURE 1. Schematic diagram of the geometry. The dashed curve represents the free surface. 

Lengths are shown in dimensional terms. 

where the pressure is assumed to be a constant p,. The film thickness is d ,  a 
constant. Let the volumetric flow rate be M and define a Reynolds number R and 

where v is the kinematic viscosity and g is the gravitational constant. It follows from 
the exact solution that 

R sin P o  = 3. 
F2 

We now use a more general bed whose equation is given by 

p = h(W, (2.3) 

where p i s  the acute angle made by the bed with the horizontal, and S is the arclength 
made dimensionless by an arbitrary reference length L. Assume p+po > 0 as S- t  
- 00, then the exact semi-Poiseuille solution is approached as S --f - 00 with film 
‘thickness ’ d and volumetric flow rate M .  Let the dimensionless film-thickness 
parameter be 

d 6 = -  
L’ 

and let Q be the perpendicular distance from the bed in units of d.  The usual 
boundary-layer assumptions amount to 

(2.4) 

R 6 = h = 0 ( 1 )  as S - t O  ( 2 . 5 )  

and YJ = W’, Q ) ,  (2.6) 

where ‘P is a stream function non-dimensionalized by M .  Standard methods and a 
careful consideration of the stress conditions a t  the free surface, 

Q = G(S) ,  (2.7) 
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with boundary conditions 

Y=O,  YQ=O o n Q = 0 ,  

YQQ = 0, Y = 1 on Q = G(S),  

Y+iQz-tQ3 as S+ -m, 

G + 1  ass+-m. 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

In obtaining this problem we have made use of the second boundary-layer equation, 
aP/aQ = 0 and boundary condition P = pa  on Q = G(S) to show P = p ,  throughout 
the film. We also used (2.2). The dimensionless fluid velocity components are u = 
aY/aQ and v = -8aY/aS within this approximation. 

The system (2.8)-(2.12) may be solved numerically by several schemes. See, for 
example Eagles & Smith (1980) for calculations on a similar problem for channel 
flow. Merkin (1973) has calculated film thicknesses for certain beds of special form 
with an initial parabolic profile imposed a t  S = 0 in some cases. Eagles & Daniels 
(1986) have obtained approximate solutions to the system by expanding Y and G in 
powers of A ,  and report that velocity profiles quite substantially different from semi- 
Poiseuille flow may be attained. 

3. Reduction to a Jeffery-Hamel problem for special beds 
In  this section we show that for a particular class of beds the problem (2.8)-(2.10) 

admits exact solutions governed by an ordinary differential equation, which is a 
limiting case of the Jeffery-Hamel equation. We shall then be able to describe in 
detail a wide variety of possible flows. We introduce the cross-stream variable 

and, now regarding Y as a function of S and 7, we obtain from (2.8)-(2.10) 

3G3(X) sinp 
sin pa ’ YVVV + ha(#) !q = AG(X) ( YV YVS - Ys YV,) - (3.2) 

YVV=O, Y = l  o n 7 = 1 ,  (3.3) 

Y=O, Y V = 0  o n 7 = 0 .  (3.4) 

The following is a special case that allows exact solutions. We observe that if G ( S )  
and G3(S) sinp are both constants, then we may treat 
obtain an ordinary differential equation. This may be 

sinPo 
G3(S) = ’ 

sin ,B 

Y as a function of 7 only, to 
achieved as follows. Let 

(3.5) 

and let G = kS, 8, < X < S,, 
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where Po, p, k, S ,  and S ,  are constants. Then 

p3 sin Po 
k3S3 

, 8, <S<S2,  sinp = (3.7) 

which specifies a shape of bed within a range of S such that 0 < lsinp( < 1, provided 
the constants are suitably chosen. 

We now write ‘Y = F ( 7 )  and 
hk = y (3.8) 

so that system (3.2)-(3.4) reduces to 

F”’(7) + y{F’(q))2+ 3p3 = 0, 
with boundary conditions 

(3.9) 

F”(1) = 0, F(1) = 1, F(0)  = 0, F’(0) = 0. (3.10) 

If we specify the value of y = kh (which can be done, for example, by specifying 
R, 6 and dG/dS = k) then we have a third-order differential equation with four 
boundary conditions and one unknown constant p. The problem may be solved and 
the shape of the bed determined from (3.7). 

In  fact this problem is just that which arises for symmetric flow between inclined 
planes in the limit with Re = y = 0(1) as e+O, where the planes are mutually 
inclined a t  an angle 2e, although in that case the constant 3p3 in (3.9) is related to 
the streamwise pressure gradient. For a given value of y many solutions exist. They 
are limiting cases of the exact solutions for flow between inclined planes. Here we 
concentrate on the simpler solutions which are connected smoothly with Poiseuille 
flow in a range of y including zero. Of course, when y = 0 the solution is F ( 7 )  = :v2 
-;q3 with p = 1. 

The problem (3.9) and (3.10) was solved numerically for -4 < y < 5.45, and 
results were checked against earlier calculations using elliptic functions (Eagles 
1966). In figure 2 we give a graph of p3 versus y ,  and in figure 3 we show the velocity 
profiles F’(7) for y = -4,4.71 and 5.3, while in table 1 we give some numerical values 
of p3 for various values of y.  

There are three main classes of flow described by this method, which we list below. 
(The labelling does not correspond to Fraenkel’s numbering, since we are not 
concerned here with representations in terms of elliptic functions.) We note that in 
all cases G 2 1, 6 > 0, R6 = h > 0 and sinp,, > 0. 

Class A 
(corresponds to Fraenkel’s class 111,) 

Here we choose y < 0. Since y = hk then k < 0. Since y < 0 then figure 2 shows 
that p > 0, and since G = kS then we must take S < 0. From (3.7), sinp > 0 and 
d p / M  > 0. The bed is downward sloping throughout and convex upwards. The 
velocity profile is flatter than semi-Poiseuille flow and the film thickness decreases 
as S increases. This is like (bisected) flow into a convergent wedge. 

An example is with y = -4,  p = 1.425, k = -1.131, h = 3.537, and with sinp, = & 
the equation of the bed is sinp = -&!T3 with, say, - 1 < S < -a. The film thickness 
in units of L is 1.13161SJ. 

Class B 
(part of Fraenkel’s class I) 

We choose 0 < y < 1.81. Then from figure 2 we see that 0 < p < 1. Since y = hk 
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FIGURE 2. 
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Values of p 3  versus y obtained by solving (3.9) and (3.10). The ordinate 
used for findingf(z) in (4.12). 

1.0 i- I I I 

0.8 I /  

also be 

0.5 1.0 1.5 2.0 2.5 

F’ (7) 

FIGURE 3. Jeffery-Hamel velocity profiles from (3.9) and (3.10), for y = -4, 4.71, 5.3. 

then k > 0, and thus from (3.6) we must take S > 0. From (3.7), sinp is positive and 
dp/dS is negative, and therefore the bed is downward sloping throughout and 
concave. The velocity profile is sharper than semi-Poiseuille flow, but has no point 
of inflexion, and the flow is like the (bisected) flow out of a divergent wedge. 

An example is with y = 1.6, ,u = 0.5024, k = 0.5024, h = 3.184. The equation of the 
bed is sinp = sinp,,/S3 with 1 < S < 4 say, and the film thickness is 0.502436. 

Class C 
[includes part of Fraenkel’s class I for y < 2.988, class 11, (2.988 < y < 4.71) and 
class 11, (4.71 < y < 5.46)] 
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Y - 4  - 2  - 1  0 0.8 1.6 

P3 2.893 1.979 1.500 1 0.5775 0.1268 

Y 2.4 3.2 4.0 4.8 5.2 5.45 

lL3 -0.3662 -0.9286 -1.623 -2.654 -3.597 -5.314 

TABLE 1 .  Some values of y 3  obtained by solving (3.9) and (3.10) 

We choose 1.81 < y < 5.46. Then figure 2 shows - 1.74 < p < 0. Since y = Ak, 
then k > 0, and therefore from (3.6) we must take X > 0. From (3.7) we see sin /3 < 0, 
and d/3/dS > 0, so that the bed is upward sloping and convex (it must be 
envisaged that this is joined to some more general bed so that the slope of the bed 
is downwards at  S = - CO). Each possible velocity profile will have an inflexion point 
in 0 < 7 < 1,  and for y > 4.71 it will have a region of reversed flow near the bed. 

An example is y = 4.8, p3 = -2.654, k = 1.099, h = 4.367. The equation of the bed 
is sin ,8 = - 2 sin /3,,/S3 with 1 < S < 4 say, and sin Po < $. 

Whether or not these exact solutions of the boundary-layer equations may be 
closely attained experimentally is not known. It may be that if a general bed, making 
an angle /3,, with the horizontal a t  X = - co is joined fairly smoothly to one of the 
special beds of class A, B or C, the Jeffery-Hamel flows may be attained to a good 
approximation. Indeed, in the case of a particular slender curved-wall channel joined 
smoothly to a section of straight-walled channel, where the Jeffery-Hamel solutions 
are applicable, it is known that these Jeffery-Hamel solutions are approached 
reasonably quickly as the calculation proceeds downstream (Eagles & Smith 1980). 
Since the calculation in the present case may be made in the same way (see $ 5 )  the 
same situation would occur here. We are not aware of any experimental results on 
this matter. 

However, bearing in mind that Fraenkel (1963) produced a theory for channels of 
infinite length and very small wall curvature in which the appropriate Jeffery-Hamel 
profiles were the correct first approximation a t  every station, it seems desirable to  
find such a theory for the thin-film flows. This is achieved in the next section. 
Although the theory is similar to Fraenkel’s in some ways, the details are different, 
and the method here introduces the new idea of a bed of special type which allows 
the Jeffery-Hamel solutions to appear within a consistent scheme. 

4. Jeffery-Hamel flow over some more general beds 
I n  this section we shall find some beds with the property that the Jeffery-Hamel 

solutions of $ 3  provide a first approximation to the flow everywhere, the parameter 
y(z) of (4.12) varying smoothly as S varies from - co to 00. We shall introduce the 
ideas by using the boundary-layer equation, but afterwards will note that the 
approximations so obtained are in fact correct approximations to the full 
Navier-Stokes equations if the film thickness is small enough. 

It is convenient to  change the definitions of the variables and parameters slightly 
in this section. We recall that in $2, d was defined as the film thickness a t  S = - CO, 

and F2 = M / g d 3  was based on this. However, the theory to be presented here appears 
in the most natural and easily grasped form if we proceed as follows. Let 

(4.1) d, = minimum thickness of film. 
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This may be a t  S = f 00 or a t  some finite value or values of S. The definition in (2.1) 
of R is unchanged, and we may define a new Froude number by 

Of course, if the minimum thickness is a t  S = - GO then d = d, and F = E;.  All the 
definitions of 92 are now to be the same except that d is replaced by d,. Strictly, of 
course, we should rename the parameters and variables, but to avoid this notatonal 
complication we keep the same symbols for the variables Q and 7 and for the 
parameters 6 and A. 

We introduce the notation 
R 

= a. 
Equation (3.2) now becomes 

dG 
dS 

YTTT + A - Y: = AG(8) ( YT YTs - Ys YTT) - aG3(S) sin p = 0, 

(4.3) 

(4.4) 

with the same boundary conditions, (3.3) and (3.4), as before. 
The idea of this section is to use beds that are slowly varying with S in such a way 

that AG(X) ( Yv YTs - Ys YT,) becomes small, while (dG/dS) remains O( 1). A naYve 
approach is to  take dG/dS = A(eS),  where A is a general bounded function and E is 
a small parameter. Then we might hope that Y would become a function of EX so that 
Ys would be O(e). Unfortunately G becomes O(e-') so the method fails. The film 
thickness must vary in such a way that a/aS introduces a factor of 1/G. 

To achieve the object, we introduce an auxiliary real variable z such that 

and 
dz e 
a=& (4.6) 

Then if Y is regarded as a function of z and 7 such that aY/az,  aY/?q etc. are 
bounded, aY/aS = O(e/G) so that the nonlinear terms in the right-hand side of (4.4) 
are O(e) ,  regardless of how large G may become. Here H ( z )  is a function a t  our 
disposal, which we choose in such a way that S+ co as z+ f 00 and S is a 
monotonically increasing function of z .  From (4.5) and (4.6) it is found that 

dG G 
dz e 
- = - H ' ( z ) ,  (4.7) 

and hence a solution is 

G = exp(e-lH(z)). (4.8) 

Then from (4.6) it is found that 

eS = 1 exp { E - ~ H ( z , ) )  dz,. (4.9) 

This is very similar to Fraenkel's theory for channels of slowly varying wall angle, 
in which a channel thickness proportional to exp (&(a)/.') appears. 

Since we have non-dimensionalized by using the minimum value of the film 
thickness then G has a minimum value of unity. Therefore, from (4.8), we must 
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choose H ( z )  2 0 for all z ,  so that G will be large when e is small, Thus there will be 
rapid variations in G, regarded as a function of z .  But since dG/dS = H ( z )  then a plot 
of G as a function of S will be entirely smooth for all values of S .  The variable is 
an ‘extremely slow ’ variable. We must choose the smallest value of H ( z )  to be zero, 
H ( z )  2 0, and in order to achieve semi-Poiseuille flow a t  S = f 00 we choose 
H’( f co) = 0. Then from (4.9) it is seen that S is a monotonically increasing function 
of z ,  and as we vary z from - 00 to + 00, S will increase over the same range. 

Assuming now that in (4.4) Y = $(v,  z )  + O ( E )  we find 

$,,, + AH’(z)  + aG3 sin p = 0, (4.10) 

where a is defined in (4.3). (In slender-channel flow the last term would be minus 
G3 times the pressure gradient in the streamwise direction.) We choose the equation 
of the bed to be given by 

(4.11) sinp = - 
aG3 ’ 

where the factor 3/01 has been introduced -for convenience, and then (4.10) 
becomes 

$,,,+Y(4$;+3f(z) = 0, (4.12) 

3f(z) 

dG 
ds y(z) = AH’(2 )  = h - . where 

The boundary conditions are 
$ = $ , = 0  o n r = 0 ,  

(4.13) 

(4.14) 

$ = l ,  $ , , , = O  o n y = 1 .  (4.15) 

Therefore z plays the role of a parameter in the ordinary differential equation 
(4.12) and if y(z) is specified we may solve the equation and boundary conditions to 
findf(z) and $(r,  z ) ,  as in the problem (3.9)-(3.10). We may refer to figure 2 and table 
1 for solutions sincef(z) is equivalent to p 3  in (3.9). 

A detailed consideration of the full Navier-Stokes equations and boundary 
conditions reveals that our approximation of this section, based on the boundary- 
layer equations, is indeed a first approximation to the full system provided that 

6 < exp(+), (4.16) 

where H ,  is the maximum value of H ( z ) .  To explain this we note that the second 
momentum equation written in terms of 

u = U ( S ,  Q )  + O(S), = SV(S,  Q )  + O(a2), p = po+sPl(S, Q )  + O(S2), 

yields (4.17) 

Also, the full boundary conditions for continuity of stress at  the free surface, when 
expanded in powers of 6 with R6 = h = 0(1) show us that Pl = 0 a t  Q = G(S), where 
the free surface is Q = G(S) + 6G,(X) + . . . . Thus we find PI = (a cosp/A){G(S) -Q) 
and hence aPl/i3S is not zero. Therefore on writing the first momentum equation in 
terms of and S in a similar way to (3.2), we find a term 6G3aP,/W. This must be 
negligible compared with unity, and for the special class of beds considered in this 
section this requirement leads to (4.16). It may be interpreted as stating that the film 
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thickness is very small compared with the radius of curvature of the bed. Of course 
the Reynolds number R must be correspondingly large. 

For the sake of brevity we have merely outlined the argument, but the full 
equations and boundary conditions have been written by the author in terms of 7 
and z.  For example, one of the terms neglected in the full equations in obtaining (3.2) 
was a2 a2U/aS2. I n  terms of Y(S, 7) we have 

where G = dG/dS. Considering, for example the second term, writing Y(S, 7)  = 
$ ( z , ~ )  and using (4.5) and (4.6) we find 

(4.19) 

and similarly all the terms in (4.18) reduce to functions of 7 and z divided by G3. 
Since, in obtaining (3.2) from (2.8) we multiplied by G3 it is clear that here we 
neglected terms of O ( P )  or smaller. Also the arclength parameter associated with S 
is h, = 1 + SQ dp/dS and this may be taken to be unity a t  first order. 

We next explain how semi-Poiseuille flow is automatically achieved a t  S = - 00, 

and give a geometrical interpretation of the constant a defined in (4.3). The equation 
of the bed is given by (4.11), where f ( z )  is determined by (4.12), (4.14) and (4.15), 
provided y(z) is specified. We refer to figure 2 to explain the behaviour of f ( z ) .  It 
should be noted that a t  positions where dG/dS = 0 we have y(z) = 0 and hence 
f(z) = 1. Thus a t  the point of minimum film thickness we have y = 0, G = 1 and 
f = 1 .  Let the angle of the bed a t  this point be pl, then from (4.11) it is seen that 

3 
sin p1 * 

a=---- 

We assume a is a constant independent of & and 6. 
Also, from (4.11) and figure 2, it is clear that 

3 
aG3( - 00) ' 

sinp, = 

(4.20) 

(4.21) 

where p+p0 as S+ -CO.  From the definitions (4.3) of a, and (4.2) of Fl it follows 
that F:/F2 = d3 /d :  and hence 

F: = F2G3( - CO). (4.22) 

Using (4.21) and (4.22) in the definition RIF2, = a it is found that 

R 3  
F2 sinp,' 
- =- (4.23) 

which is the required relation for semi-Poiseuille flow a t  S = - 00. Of course, if the 
minimum film thickness occurs a t  S = z = - 00 then d = d,, Po = pl, F = Fl and 
C(-co)  = 1 so that (4.20) is the same as (4.21). 

We now show how the theory is applied in several examples. 
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Example 1 

Here we specify Po, the angle of the bed a t  S = - co, and choose H (  - 00) = 0, H ( z )  
monotonically increasing with z and H(m) = H I  > 0. Thus the minimum film 
thickness is a t  S = z = - G O ,  and G( - co) = 1. Hence from (4.20) we have a: = 

3/sin$, and the equation of the bed is 

(4.24) 

where G is given by (4.8), with S given by (4.9). We suppose AH’@) < 1.81 for all z .  
Then the values of y(z) in (4.12) are positive but less than 1.81, and from figure 2 it 
is seen that f ( z )  decreases from unity a t  S = - GO to reach a minimum value, which 
is positive, and then increases again to unity a t  S = 00. In  figure 4 we show 
schematically how W ( z )  andf(z) vary with z (curves B). 

The streamwise velocity profiles are of class B (see $3)  and change from semi- 
Poiseuille flow at S = - GO (where f ( z )  = 1, G = 1 and ,8 = pa), through a range of 
Jeffery-Hamel profiles for 0 < y < 1.81, then back again to semi-Poiseuille flow at  
S = co. From (4.24) we see that, sinp = sinPo exp ( -  3 H J s )  a t  S = CO. From (4.24), 
(4.5) and (4.6) 

(4.25) 

and since H’(z) and f ( z )  are positive the curvature is negative for sufficiently small 
values of E ,  i.e. the bed is concave upwards and ,!3 remains positive throughout. The 
flow may be described as ‘divergent flow on a concave downward-sloping bed ’ and 
we note that in this case, although the velocity profiles may become considerably 
‘sharper’ than semi-Poiseuille flow, no points of inflexion occur and no regions of 
reversed flow exist. 

Example 2 
Again, as in example 1 we choose H (  - 00) = 0, H(co)  = H I  > 0 and H mono- 

tonically increasing with z ,  with the equation of the bed being given by (4.22). 
However, we now assume that H’(z )  reaches a maximum value at  z = 0, say, with 

1.81 < / w ’ ( O )  < 5.46. (4.26) 

By reference to figure 2 and figure 4 (curves C) we see thatf(z) now takes negative 
values in a range of z and hence, from (4.11), sinp becomes negative in this range of 
z. Thus the bed takes the form illustrated in figure 5 .  It is a generally downward- 
sloping concave bed, with a hump on which j3 becomes negative. The angle of the bed 
is Po a t  S = - 00 ; and at S = 00,  sinp = (sinPo) exp ( - 3H1/c) .  If we take h large 
enough then / W ’ ( z )  = y(z) is greater than 4.71 in a range of z ,  so that profiles of class 
C with y > 4.71 (see $3)  occur. Thus a region of reversed flow exists near the wall. 
Separation and reattachment occur smoothly. There are no singularities in the flow 
field. 

In  table 2 we give approximate values of S, X ,  Y and G for the case when H ( z )  = 
;(1+ tanhz), with h = 20, E = 0.4 and sinp, = 0.5. Here X ,  Y are the Cartesian 
coordinates, with X measured horizontally and Y vertically upwards, the origin 
being a t  S = 0. 

The bed and film thickness are sketched in figure 5 ,  with the actual film thickness 
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(4 
AH‘(z)  

0 Z 

1 .o 

FIGURE 4. Behaviour of (a) W ( z )  and (6) f(z) in example 1 (curves B) and example 2 
(curves C). 

10 12 8 4 6  -10 -8 - 6  -4 -2 0 2 

x 

FIGURE 5. Sketch of flow for W ( z )  = 0.25 (1 +tanhz), h = 20, 6 = 0.4. At point A, y = 0.05; at B, 
y = 2.1; at C, y = 5.0; at  D, y = 2.1;  a t  E, y = 0.51. The true film thickness is 2.56 times that 
sketched. The velocity profiles are very approximate. 

being 2.56 times that shown on the diagram, since to show the actual thickness for 
say 6 = 0.1 would make it too small to represent diagrammatically together with the 
shape of the bed. 

Example 3 
We choose H (  - 00) = H ,  > 0, H(m) = 0 and H monotonically decreasing with z .  

Thus, from (4.8), 0 has its minimum value a t  S = 00 and the angle there is PI. The 
eauation of the bed is 

Since H’(z) is generally negative, the values of y(z) are negative, and from figure 
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z S G X Y P Y 
-00 -m 1 .oo -m 00 

-3.0 -8.80 1 .oo -8.34 2.191 
-2.0 -6.27 1.02 -6.09 1.668 
-1.0 -3.60 1.16 -3.49 1.147 

0 0 1.81 0 2.0 
1 .o 6.18 3.01 6.16 2.389 
2.0 14.3 3.41 14.3 2.337 
3.0 22.9 3.49 22.9 2.241 
cg m 3.49 00 -00 

0.523 
0.504 
0.393 

-0.058 
-0.282 
-0.003 
+0.010 

0.011 
0.012 

0 
0.049 
0.353 
2.10 
5.0 
2.10 
0.353 
0.049 
0 

TABLE 2. Some values of parameters and coordinates when H ( z )  = 0.25 ( 1  + tanh z ) ,  h = 20, E = 
0.4, sinp,, = 0.5 for example 3 of $4 

2 the values off(z) are positive. The Jeffery-Hamel flows attained are of class A (see 
§3), and are ‘flatter’ than semi-Poiseuille flow. This is a downward-sloping, convex 
bed on which the film thickness decreases as S increases. 

Other examples may easily be constructed. For example, it is possible to choose 
H(x)  in such a way that the flow tends to a Jeffery-Hamel flow as S-t  a. Or it is 
possible to choose H ( z )  to be zero a t  some finite value of z ,  say z = 0, giving a 
minimum film thickness at S = 0. 

In the next section we discuss further points about the approximation, and 
whether or not these flows are likely to be attained experimentally. 

5. Further discussion 
5.1. Singularities 

The type of bed discussed in $4 is rather special. The question may be asked ‘Is the 
theory relevant to more usual beds whose equations are sinp = h(S) 1 ’, so that the 
governing equation and boundary conditions are (2.8)-(2.12). The evidence from 
calculations on channel flows is encouraging. Eagles & Smith (1980) calculated 
steady-state flows in channels whose walls were given by y = + _ H ( X ) ,  where X = ex 
and Re = h = 0(1) as e + O .  This leads to a problem identical with the present 
problem, except that a scaled pressure gradient replaces the gravitational term. In 
fact Eagles & Smith use a form of the boundary-layer equation 

where H(X) = 1 + t tanhX is specified as the channel width. The boundary conditions 
on the stream function obtained are the same as in the present paper if we take the 
flow field over half the channel width. The pressure gradient dP/dX is determined as 
part of the solution and for values of h greater than about 6 it is found that dP/dX 
becomes positive over a limited range of X. Thus, writing dP/dX = T(X), if in (3.2) 
we set sinp = -@T(S) sinp, it reduces to the same form as the equation used by 
Eagles & Smith. Therefore the solutions of Eagles & Smith are applicable to the 
present problem of thin-film boundary-layer flow, and wherever T ( S )  becomes 
positive sin p becomes negative. There are no reported singularities at separation or 
elsewhere for calculations up to A = 18. The flows found include some cases with 
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reversed flow near the walls, qualitatively similar to the Jeffery-Hamel solutions 
with y > 4.71. 

Merkin (1973), in his calculation of boundary-layer flows over curved beds, 
postulated a singularity a t  separation, which seemed to be indicated by some of his 
numerical results, inasmuch as the streamwise gradient of the skin friction was 
becoming large as the separation point was approached. However, the work of Eagles 
& Smith mentioned above shows that the flow does not necessarily have a singularity 
a t  separation. Indeed it would appear unlikely that a singularity will in general 
appear a t  separation, since there is nothing especially remarkable about the case of 
H = 1 + t  tanhX. While it is true that the slowly varying assumption made about the 
flow in $4  may, by its nature, exclude certain singularities, it  is of interest to note 
that this theory predicts a singularity at y = hdG/dS = 5.46, rather than a t  the 
separation value of y = 4.71. The conclusion we make is that for the ordinary 
boundary-layer equations there is not necessarily a singularity a t  separation in flow 
over a curved bed, and for the slowly varying theory of $4 there is definitely not a 
singularity a t  separation. Wang (1984) also gives an example of flow with separation 
and reattachment of the main stream over a curved bed, though this is with non-zero 
surface tension and is on a downward-sloping curved bed. 

5.2. Xtability 
The question of the stability of the flows of 993 and 4 is interesting. According to 
long-wave instability theory (see Yih 1963), for straight beds the critical Reynold 
number is R,, = $ cotp, where p is the angle of inclination of the bed. Now if /3 
approaches zero, R,, approaches infinity. On a uniformly straight bed it is unrealistic 
to take p = 0, but on curved beds the local p may well become negative. In such cases 
the velocity profiles, however, are quite different from semi-Poiseuille flow and may 
well be more unstable. There may be a destabilizing effect due to the change in the 
streamwise velocity profile for the divergent flows of $$3 and 4, but a stabilizing effect 
due to the small, or negative values of p. It seems possible that these two effects may 
interact to make the flows described in 993 and 4 stable for some finite range of R, 
even in the cases where p becomes negative. This however, is speculation, and 
detailed calculations are needed. This work is under way and results will be reported 
a t  a later date. The author has been able to find no references to theoretical work on 
stability of flow on a curved bed. 

5.3.  Conclusions 

(i) We have demonstrated the existence of some exact solutions of the boundary- 
layer equations over certain curved beds with sinp = K / S 3  for a limited range of S. 
This work is described in $3. 

(ii) These exact solutions, which are of Jeffery-Hamel type, are shown in $4 to 
occur as a first approximation a t  every station for certain special beds of infinite 
streamwise extent. 

(iii) For the flows of $4, separation and reattachment of the main stream can occur 
with no singularities. 

(iv) We believe the specialized results of $4  give a guide to the types of flow that 
may occur over general curved beds with equations /? = h(S).  

(v) The investigation of the stability of these flows would be of interest. 
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